Interdisciplinary Summer School 2023

Energy Economics in Transport Hydrogen and Fuel Cell Vehicles

Amela Ajanovic Energy Economics Group (EEG)

Institute of Energy Systems and Electrical Drives Vienna University of Technology

Web: <u>http://eeg.tuwien.ac.at</u>

Introduction

- Recent developments in the transport sector
- EU policy goals
 - >ZEV

> Hydrogen

- Energy carrier
- Storage
- Conclusions

....decarbonisation, energy efficiency, affordability and reliability of the energy system.

...planning and operation of the energy system as a whole:

- multiple energy carriers (e.g. electricity, gas, heat)
- infrastructures
- consumption sectors (industry, buildings, transport)

....energy security

...reduce energy import dependency

...reconsider material and energy supply chains

...energy resilience

...accelerate transition towards more sustainable energy system

Hydrogen vision

A challenging European hydrogen vision

Source: EU, 2003

Transport sector

Greenhouse Gas Emissions (GHG)* by Sector: EU-27

EU - the first climate-neutral continent by 2050

European Green Deal

passenger cars in EU countries

Announced 100% ZEV sales targets and bans on ICE vehicle sales

	2025	2030	2035	2040	2045	2050
Costa Rica						•
Denmark		•				
France				•		
Iceland		•				
Ireland		•				
Israel*		•		•		
Netherlands		•			•	
Norway	•					
Portugal				•		
Slovenia		•				
Spain				•		•
Sri Lanka				•		
United Kingdom				•		
ICE sales hap or 100% ZEV/ sales target				Electivit		

ICE sales ban or 100% ZEV sales target

Fleet without ICES

Zero-emission vehicles

Advantages

FCVs vs BEVs

BEV

- Costs
- Infrastructure
- Fuel efficiency

FCV

- •Refuelling time
- •Driving range
- •Weight of energy storage

Major historical steps and milestones Conomics In the development of hydrogen and FCV

Citroën ë-Jumpy Hydrogen

FCV

PEUGEOT e-Expert Hydrogen

Honda Clarity Fuel Cell

Hyundai ix35

Toyota MIRAI II

Hyundai NEXO

Opel Vivaro-e HYDROGEN

Energy supply chains

nergy conomics

roup

Colors of hydrogen

WIEN

H2 production costs

WIEN

Green hydrogen

Carbon intensity of electricity, 2022

For the second second

Carbon intensity is measured in grams of carbon dioxide-equivalents emitted per kilowatt-hour of electricity.

Source: Our World in Data based on BP Statistical Review of World Energy & Ember

OurWorldInData.org/energy • CC BY

Emissions of hydrogen

WIEN

Artist: Marian Kamensky

nergy

conomics roup

Environmental assessment

The costs per km driven C_{km} are calculated as:

$$C_{km} = \frac{IC \cdot \alpha}{skm} + P_f \cdot FI + \frac{C_{O\&M}}{skm}$$

[€/100 km driven]

IC.....investment costs [€/car] α.....capital recovery factor skm....specific km driven per car per year [km/(car.yr)] Pf.....fuel price incl. taxes [€/litre] C_{0&M}...operating and maintenance costs FI.....fuel intensity [litre/100 km]

A capital recovery factor (α) is the ratio of a constant annuity to the present value of receiving that annuity for a given length of time. Using an interest rate (z), the capital recovery factor is:

$$\alpha = \frac{z(1+z)^n}{(1+z)^n - 1}$$

n.....the number of annuities received.

Fuel cell vehicles

Structure of investment costs of fuel cell vehicles

Development of the costs of the fuel cell system

WIEN

Scenario for development of investment costs

- Major challenges of global energy system:
 - sufficient and secure energy supply
 - reduction of energy-related greenhouse gas emissions
- Increase use of renewable energy sources
- How to cope with excess electricity from RES

Integrating large shares of renewable electricity

nergy onomics roup

Integrating large shares of renewable electricity

Monthly generation and demand

© Siemens AG 2014 All rights reserved.

Hydrogen as storage

Very low roundtrip efficiency for electricity!

Hydrogen: storage and fuel

WIE

Energy supply chains: Storage and/or use of RES for mobility

'Chicken and egg' dilemma

The transition to a hydrogen economy is complex

CM-Car Manufacturer

GDP and EV sales

ACEA

73% of all electric cars are sold in just 4 countries (with some of the highest GDPs)

Electric cars < 3% of total sales = average GDP < €17,000

Electric cars > 15% of total sales = average GDP > €46,000

GDP and charging infrastructure

70% of all charging points: Located in just 3 EU countries 29.7% 29.7% Netherlands 20.4% France 19.9% 19.9% Germany 20.4%

35k

1k

500

5k

Number of charging points

10k

50k

Policy framework

Scenarios: hydrogen production

WIEN

Hydrogen production (Million tonnes)

nergy conomics

roup

Announced targets for FCV

Hydrogen roadmap plan in Europe

commercial vehicles

cell light commercial vehicles on road

cell trucks and buses projected

to be on the

road

diesel trains

Car-oriented mobility

Car-oriented mobility

Car-oriented transport development

Car-oriented mobility

Towards Sustainable Mobility

...unnecessary travel and reduce trip distances

...towards more sustainable modes

...transport practices and technologies

Hydrogen can help to:

- ✓ Increase diversification of energy used in transport
- Decarbonize different transport modes (incl. trucks, ships, planes)
- ✓ Enhance energy security
- Integrate more renewables, serving as storage and providing flexibility to grid balance

Major challenges for hydrogen and FCV:

- Economics
- Infrastructure
- Policies framework

International Journal of Hydrogen Energy Available online 4 March 2022 In Press, Corrected Proof (?)

The economics and the environmental benignity of different colors of hydrogen

A. Ajanovic ^A ⊠, M. Sayer, R. Haas

Energy Volume 235, 15 November 2021, 121340

Prospects and impediments for hydrogen fuel cell buses

A. Ajanovic ^A ⊠, A. Glatt, R. Haas

Review 🖻 Open Access 💿 👔

Economic and Environmental Prospects for Battery Electric- and Fuel Cell Vehicles: A Review[†]

A. Ajanovic 🔀, R. Haas

International Journal of Hydrogen Energy Volume 46, Issue 16, 3 March 2021, Pages 10049-10058

Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector

A. Ajanovic ^a [∧] [∞], R. Haas ^a [∞]

ajanovic@eeg.tuwien.ac.at